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The collisional-radiative model for hydrogenlike ions is used to investigate the scaling of recombination at
low temperatures in order to identify the necessary conditions of electron density and temperature, which will
allow population inversion between the first excited state and the ground state to be developed. Numerical
calculations show that at low temperatures the population growth in the hydrogenic states can be represented
by similarity relations. The physical origin of these forms is presented. A table of minimum densities at which
inversion will occur is given as a function of temperature for ions of arbitrary atomic number.
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I. INTRODUCTION

The generation of population inversion by recombination,
and the subsequent development of gain for the extreme ul-
traviolet and soft x-ray spectral regions, has a long history
following from the original proposal by Gudzenko and Shel-
epin �1�. The original applications concentrated on Balmer
series transitions between the n=2 and higher states in the
hydrogenlike sequence and in particular the H� line between
the levels n=2 and n=3 as a result of its higher oscillator
strength. Experimental evidence of this behavior in ionized
systems was initially obtained by Irons and Peacock �2� and
Jaeglé et al. �3�, the latter using Li-like ions.

Analysis of the generation of gain on Lyman transitions to
the ground state has been much more restricted. The poten-
tial for experiments in which the lifetime was limited by a
short decay transition into the ground state and the conse-
quent rapid ionization rate was small at that time, and only a
few papers considered the problem �4–6�. More recently di-
rect photoionization by radiation from either an adjacent la-
ser plasma �7� or a free electron laser �FEL� �8� has been
considered. In the first case electron heating resulting from a
broad bandwidth of the pump radiation required further cool-
ing to generate ground-state inversion. However, this is
avoided in the second proposal by the restricted bandwidth
of the tuned pump laser pulse.

The advent of short �subpicosecond� high-power laser
pulses generated by chirped pulse amplification �CPA� sys-
tems changed this situation by using multiphoton ionization.
Burnett and Corkum �9� introduced the concept that such
lasers in linear polarization would generate very cold plas-
mas ideal for recombination pumping. The idea was further
explored by a number of workers, principally for transitions
between excited states, which can operate in a quasisteady
mode. The reported experimental observation �10,11� of gain
on the L� transition �n=2–1� in a hydrogenic lithium
plasma has led to a renewed interest in the possibility of
lasing to the ground state in recombining systems in view of
their potential to generate very short wavelengths. Theoreti-
cal studies have recently been reported by Avitzour et al.
�12,13� and Pert �14�. In this paper we investigate this con-
ceptual system of cold fully stripped ions in a hydrogenic
background, generated by above-threshold ionization �ATI�,
recombining to create a population inversion between the
first excited and ground states.

The general picture of cascade recombination was devel-
oped in the early 1960s where the role of the “bottleneck” in
collisionally dominated systems was introduced by Hinnov
and Hershberg �15� and the equivalent “collision limit” in
radiatively by Griem �16� and by Kuznetsov and Raizer �17�
in different forms. This model involved thermal equilibrium
between the continuum and the excited states down to the
bottleneck and collision limit. Recombination is due to the
passage of electrons across this state, their probable subse-
quent trajectory being downward to the ground state. This
picture was given a more formal structure in a quasiclassical
analysis by Gurevich and Pitaveskii �18,19� and others
�20,21� using a Fokker-Planck description. The alternative
collisional-radiative scheme of Bates et al. �22,23� and
McWhirter and Hearn �24� gives a more complete descrip-
tion of recombination. The two approaches were reconciled
by a review of the models of recombination �25�. The
Fokker-Planck equation was identified as the limit of the
collisional-radiative equation for small energy differences
between neighboring energy levels. The analysis also con-
firmed the validity of the simple physical pictures involving
the bottleneck or collision limit.

This work was carried out in the 1960s and 1970s, and the
scaling for collisional-radiative recombination is conse-
quently well known. Nonetheless, despite many simulations
to examine particular systems, there has been no attempt to
examine the problem of inversion in a general way. In this
work we will consider the population of the ground and ex-
cited states in hydrogenic ions as functions of time for a
system of fixed temperature and electron density under the
assumption that the free electrons have a thermal distribu-
tion. This corresponds to the experimental condition of ATI
ionization of a gas mixture of mostly hydrogen, whose role is
to provide a high-density cold-electron environment �26�. It
will be assumed that the electron distribution is Maxwellian,
although simulations indicate that there may be a cold-
electron distribution, with a small hot non-Maxwellian tail
�14�. It will be found that there is a general scaling which is
related to that of the steady-state collisional-radiative model
�24� and which allows results of considerable generality. Our
principal interest will lie in transient inversion of the reso-
nance level n=2 to the ground state n=1. The inversion
therefore occurs early in the recombination of the fully
stripped ions such that our assumptions of constant tempera-
ture and electron density are well maintained. If in addition a
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buffer population of hydrogen ions is used to provide the
cold electrons �26�, this condition is even stronger.

II. MODEL

The collisional-radiative model for hydrogenic ions was
developed by Bates et al. �22,23� and McWhirter and Hearn
�24� and was extended by the author �25�. In this represen-
tation transitions between a set of hydrogenic energy levels
of an ion of nuclear charge Z characterized solely by their
principal quantum number n are assumed to take place due to
radiative and electron collisional effects. It is assumed that
no radiation absorption occurs. The population of the state
n—namely, qn—can then be written as

dqn

dt
= �

m

Cnmqm − �
m

Cmnqn + �
m�n

Anmqm − �
m�n

Amnqn

+ �Cn� + An��q� − C�nqn, �1�

where Cmn and Amn are the electron collision and radiative
transition rates from state n to state m, respectively, C�n and
Cn� the collisional ionization and recombination rates from
and into state n, respectively, and An� the radiative recombi-
nation rate. The fractional population of the ground state of
the next ionization stage, q�, is given by the rate equation

dq�

dt
= �

n

�C�nqn − �Cn� + An��q�� . �2�

The sum of Eqs. �1� and �2� is

d

dt��n

qn + q�	 = 0, �3�

and the total population of the states and continuum is there-
fore constant.

The rates are given by relatively simple expressions, as in
our earlier work �25�, consistent between bound and free
states:

The electron collision rate is given by the Bethe approxi-
mation �27� for excitation from state m to n �m�n�:

Cnm = 16��2�

3
	1/2a0

2IH
2

Wmn
� 1

mekT
	1/2

�
�gf�mn

gn
ḡIII exp�−

Wmn

kT
	ne, �4�

where Wmn is the energy difference between states n and m,
IH the ionization energy of a hydrogen atom �13.6 eV�, a0

the radius of the first Bohr orbit �0.529�10−8 cm�, �gf�mn

the �statistical weight�� �oscillator strength� product for the
transition n to m, gn the statistical weight of state n, and ne
the electron density. Although strictly only applicable at high
electron energies, a useful approximation was introduced
�28,29� by assigning an empirical value for ḡIII the averaged
free-free Gaunt factor to match more accurate calculations.
This approach was systematically improved by Sampson and
Zhang, whose final approximation for hydrogenic ions �30�
we use here for both excitation and ionization.

The deexcitation rate from state m to n �m�n� is given by
the condition of detailed balance applied to Eq. �4�:

Cnm = �gn/gm�Cmn exp�Wmn/kT� . �5�

The ionization rate is obtained by extending the excitation
rate to upper states for collisional excitation �4� into the con-
tinuum and integrating over the free states:

C�n =
28�2��1/2

9

a0
2IH

Z2

1

�mekT�1/2 � nḡIIḡIIIE4�In/kT�ne,

�6�

where In is the ionization energy of state n and En�x� is the
exponential integral of the nth degree.

The recombination rate into state n is also given by a
condition of detailed balance applied to the ionization rate
�6�:

Cn� =
h3

2�2�mekT�3/2
gn

g�

C�nne exp�In/kT� . �7�

The radiative deexcitation rate

Amn =
8�2e2Wmn

2

meh
2c3

�gf�mn

gn
. �8�

The radiative recombination rate is most easily obtained
by extending the above equation �8� from the bound states
into the free and integrating over the continuum:

An� =
128�3

3
3

e2a0
2�3

h
Z� In

�kT
	3/2

ḡII�� In

kT
	ne, �9�

where h is Planck’s constant, ḡII the averaged free-bound
Gaunt factor, and ��x�=exE1�x�.

A. Time-dependent model

In the transient case, the rapid depletion of the ion “res-
ervoir” into the high-lying states occurs. The correct condi-
tion is that the total population of bound and free electrons
must be held constant—i.e., Eq. �3�—which requires the in-
tegration of both Eqs. �1� and �2�.

It is convenient to introduce dimensionless forms for the
density and temperature:

Y =
I1

kT
=

Z2IH

kT
,

Ne =
h3

2�2�mekT�3/2ne,

Nn =
h3

2�2�mekT�3/2nn,

N� =
h3

2�2�mekT�3/2n�, �10�

which allow the rates to be cast into a more direct form. We
note that since the Fermi energy EF= �h2 /2me��3ne /��2/3, the

G. J. PERT PHYSICAL REVIEW E 76, 056404 �2007�

056404-2



expression Ne= �1 /6
���EF /kT�3/2, which must be small as
we use classical statistics. In numerical units Ne�3.3
�10−24Z−3Y3/2ne �cm−3�, which validates the above assump-
tion at the densities at which experiments are likely to be
performed. In these units Saha’s equation takes a particularly
simple form

N�Ne

Nn
=

g�

gn
exp�− Y/n2� . �11�

The rates may be also cast into simpler forms in terms of
a characteristic rate A,

A =
16�2a0

2IH
2 me

h3 =
2IH

h
= 6.580 � 1015 s−1, �12�

and a constant B=��3Z4=1.221�10−6Z4. A expresses the
characteristic rate of collisional processes and �=B /Ne the
relative strength of the radiative ones.

The collisional and radiative rates reduce to

Cmn ⇒ AC̄mn�Y�Ne, �13�

Amn ⇒ A�ĀmnNe, �14�

where

C̄mn =
8�


3

kT

Wmn

�gf�mn

gm
ḡIIIexp�− Wmn/kT� , �15�

C̄�n =
128

9

n

Y
ḡIIḡIIIE4�Y/n2� . �16�

The collisional recombination rate

C̄n� =
gn

g�

C̄�nNe exp�Y/n2� , �17�

and the radiative recombination rate

Ān� =
32

3
3�

1

n3��Y/n2� . �18�

The constant A may be usefully combined with the elec-
tron density and the time to form the reduced time t̄=ANet
for the collisional process, to give a modified set of equations
�1�:

dqn

dt̄
= �

m

C̄nmqm − �
m

C̄mnqn + �
m�n

�Ānmqm − �
m�n

�Āmnqn

+ �C̄n� + �Ān��q� − C̄�nqn. �19�

B. Steady state

The steady state, where we consider only the recombina-
tion of the system from the ionization state down to the
ground state, allows a significant simplification in terms of

the set of reduced variables �10� �24�. The dimensionless
density forms �10� are modified to include the Z scaling and
yield a set of similar relations1

N̄e = Z−4Ne,

N̄n = Z−7Nn,

N̄� = Z−3N�, �20�

with the additional modifications Ā=AZ4 and B̄=BZ−4

=1.221�10−6, the other equations remaining unchanged.
If the depletion rate of the upper states is slow, we may set

the population of the ionization stage to an arbitrary and
constant value, typically unity, and may evaluate all the
excited-state populations in terms of this. We thus eliminate
the need to use Eq. �2� and simply work from the set �1� with
arbitrary �unit� population in the continuum. Within the
model, the total population of the high-lying excited states,
which are in thermal equilibrium, may exceed that in the
continuum, depending on where the �arbitrary� upper state is
taken. However, in reality these states probably lie above the
depressed ionization cutoff. Since these levels form a quasi-
continuum in thermal equilibrium with the ionization states,
this introduces no error to the overall population distribution,
only changing the value of the total population, and ensures
a smooth merging into the true continuum. These states make
little contribution to the cascade and simply maintain a dy-
namic equilibrium among themselves and with the con-
tinuum. Within the model, their principal role is to establish
the stochastic behavior which leads to the diffusive cascade
into the lower states. Since the recombination rate is calcu-
lated as the downward flux through the states to the ground
state and is the same at every level in the cascade, no error is
incurred provided the value of this rate is calculated as a
fraction of the ion population. Furthermore, any population
inversion calculated between low-lying states is real, but the
numerical value of the inversion needs to be carefully deter-
mined.

III. STEADY-STATE RECOMBINATION

At low density recombination is directly from the ioniza-
tion continuum into the ground and resonance levels. The
rates are given by Eq. �18�. At low temperature Y is large and
the function ��x��1 /x, so that the ground-state population
rate is �2� greater than that into the resonance level, a
result which can be shown to be valid for all Y. No inversion
is therefore possible unless collisional recombination plays a
dominant role at least into the resonance level.

It was shown in our earlier work �25� that cascade recom-
bination takes place in two regimes in which the cascade

1The scaling of N̄n and N̄� is somewhat arbitrary, governed only

by the Saha relation, whereas N̄e is determined by the collisional
excitation rate. The choice �25� made here is that ne=Zn�, appro-
priate to a single element, but alternative forms are equally suitable
�24�.
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through the excited states is dominated by either collisional
or radiative effects and depends on the larger of the two
values of the lowest quantum numbers to which thermal
equilibrium with the continuum can be maintained in each
regime. Electrons in states below this limit probably decay to
the ground state and thus contribute to recombination. In the
asymptotic limit that Y is large, analytic solutions �25� allow
us to clearly identify these regimes. In the collisional case
this is the “bottleneck” state whose quantum number nC

is simply given by nC=
Y. In the radiative system the
limiting state is the “collision limit” given by nR

7�ln nR�−1

= �2 /�2�B̄ḡIIIYNe
−1. Among the states above the appropriate

limit, thermal equilibrium is maintained by strong upward
collisional excitation, which balances the downward colli-
sional and radiative deexcitation. Below the limit state this is
no longer the case and it is probable that an electron will fall
to the ground state, either directly or indirectly. It is not
necessarily implicit that in the collisional case radiation
plays no role, simply that the limit state is determined by
collisional deexcitation and consequently the recombination
rate also: radiative transitions are likely to play an important
role in the final decay into the ground state.

It is relatively straightforward to solve the set of equations
�1�. The population rate of the resonance level �n=2� is de-
termined by the sum of the fraction of the cascade, which
passes through that level, and the direct radiative transitions
from high-lying states and the continuum. Figure 1 compares
the population rates into the ground and first excited states
for different temperatures and densities.

We note some salient facts. At low densities the rate into
the ground state is larger, a consequence of the dominance of
radiative decays, which favor larger energy gaps. At high
density the rate into the resonance level may be the faster,
collisional effects playing a stronger role: at low tempera-
tures collisions dominate and nearly all electrons reaching
the ground state pass through the n=2 excited level. Below a
certain temperature there is a critical density at which the

two rates are equal, whose value is only weakly temperature
dependent. Although low temperatures �Y large� favor colli-
sional decay, the transition density is lower for higher tem-
peratures �Y small�.

Although we require solutions for the temporal develop-
ment of the ionization and excited state populations �Eq. �1��,
we can nonetheless draw some useful conclusions from these
steady-state results. Since the high-lying excited states are
rapidly filled, the population rates of the ground and reso-
nance states are given approximately by the rates in Fig. 1.
These show characteristic behaviors. At low density the
population rate to the ground state is mainly radiative recom-
bination, but as the density increases, the collisional cascade
dominates, the transition occurring very approximately at
N̄e�10−6. At high temperature �Y 	20� the bottleneck is suf-
ficiently close to the n=2 level that upward collisional tran-
sitions from the resonance to higher levels are possible and
that in the steady state the downward rate into this level is
greater than that continuing down to the ground state. At low
temperatures �Y 
50� all downward transitions continue to
the ground state. As a result, at low temperature and high
density the transition rates into the ground and resonance
states become nearly equal. These effects can be clearly seen
in Fig. 1 for values of the temperature parameter Y greater
than about 40. For values of Y �60 the steady-state transition
rate to the resonance level never exceeds that to the ground
state, the two being nearly equal for large values of the elec-
tron density N̄e. Any inversion under these conditions is
therefore solely due to the time delays inherent in the estab-
lishment of the cascade.

To take advantage of the much larger population rates at
lower temperatures to generate inversion, we must take ad-
vantage of the time delays which occur in the transient phase
as the levels are progressively filled by the cascade.

IV. TRANSIENT RECOMBINATION

Turning now to the principal case of study—namely, that
in which the populations of the bound states are filled by
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recombination from the continuum—we note that the simi-
larity with respect to Z expressed in the set of variables �20�
cannot be maintained in the transient case. However, since
the transient into the highly excited states is very rapid and
the decay of the remaining continuum electrons slow, the
decaying electrons being supplied from the large numbers in
the high states, we may expect that once this early transient
phase is complete, the steady state may give an accurate
representation of the behavior in the higher states, and thus
the Z scaling seen earlier is likely to be reasonably well
obeyed.

However, this is of course an incomplete picture with re-
spect to our problem, in that we are interested in the devel-
opment of the population in both the ground and resonance
states, which will themselves be strongly dependent on the
progressive development to the steady-state population in the
states above. Figure 2 shows the development of the popu-
lations of the excited states towards their equilibrium. Thus
we see a general diffusion of population down the levels
progressively filling them to their equilibrium condition. As a
result, the growth of population in the levels of interest is
delayed until the levels immediately above them are filled,
the main transitions being collisional and therefore between
neighboring levels. It can be seen that in this case a Saha
population in equilibrium with the continuum is maintained
down to the level n=4. Note that the predicted bottleneck at
n=
Y �6 is larger than that calculated, in agreement with
previous studies �25�.

To demonstrate the behavior of these recombining sys-
tems we present a series of case studies, which exemplify the
differences.

Figure 3 shows the recombination of lithium plasmas at
three temperatures �Y =100, 40, and 20� and two reduced
electron densities �Ne=2�10−5 and Ne=3�104�, corre-
sponding to 1.6�1017 cm−3 and 2.45�1019 cm−3 at 1.5 eV
�Y =100�, 6.5�1017 cm−3 and 9.7�1018 cm−3 at 3 eV
�Y =40�, and 1.8�1018 cm−3 and 2.7�1019 cm−3 at 7.5 eV

�Y =20�, respectively. It can be seen that the n=3 level rap-
idly reaches its steady state, whereas the population of the
n=2 state is still increasing slowly at the end of the calcula-
tion. It can also be seen that in every case the absolute value
of the population of the n=3 state is practically independent
of the density and the n=2 state almost so. The temporal
histories of the n=3 and n=2 states as plotted are nearly
identical for the two different densities.

In Fig. 3 the populations are plotted as fractions of their
statistical weight, so that population inversion can be readily
identified. At the higher density inversions are formed be-
tween the excited states and the ground state in all three
cases. The relative populations are quite small and the inver-
sion is longer lived at the highest temperature.

At the lower density the situation is changed in that
at the largest value of Y =100—namely, the lowest
temperature—no gain is achieved. At the lowest value of Y
=20 inversion is achieved, but is relatively short lived. In the
intermediate case Y =40 inversion is only just achieved.

Figure 4 shows a comparison of recombination in carbon
with one in lithium, both at the same temperature �Y =40� but
at different densities of Ne=10−3 and Ne=6.25�10−5, re-
spectively. The values are scaled by the factor Z4 in accor-
dance with the similarity expressed by the steady-state
model. Comparison of two temporal profiles of population
shows that they are almost exactly identical in value at a
common time, but that the time history in the lithium case is
slightly delayed by the initialization of the cascade.

Figure 5 also shows a case where the inversion is just
formed. In this case we examine the variation with density at
Y =100. It can be seen that an inversion is readily developed
at the higher density �ne=2.2�1020 cm−3�, but at the lower
density �5.2�1019 cm−3� one is only just formed.

V. DISCUSSION

To establish an inversion on the L� transition, the basic
criterion is that the first excited level must fill faster than the
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ground state. This condition requires that the recombination
be dominated by collisions and that the plasma be suffi-
ciently dense and cold that direct recombination is weak.
This suggests that we operate in a collisional cascade with

the bottleneck state somewhat above the first excited state,
but sufficiently low that the n=2 level population is reason-
ably high—say, 50% of the Saha population—i.e., a value of
Y �25. However, the Saha population in this case is itself
relatively small and a larger value of Y �i.e., a lower tem-
perature� may yield a more rapid population growth and a
larger population. The time taken to establish this population
distribution down to the resonance state is determined by the
cascade down through the excited states. On the other hand,
population growth in the ground state is normally controlled
by radiation, with contributions from both the continuum and
high-lying states and from the low-lying excited states �prin-
cipally n=2 due to its large transition rate� when filled.

In these calculations the ion is represented by 200 bound
states plus the continuum. This large number of levels is used
to ensure that the transition between the high-lying states and
the continuum is smooth. In practice, ionization depression
effects will be expected to reduce the number of bound levels
below this value. Typically for an ion density of 1019 cm−3,
the continuum limit is at n�13. This is well above the
bottleneck so that the “diffusion” cascade is well formed in
practice. The atomic states move into the continuum with
similar transition rates, expressed by the local thermody-
namic equilibrium �LTE� condition and Saha’s equation. Use
of a large number of states has replaced the continuum dis-
tribution by a closely spaced discrete one. Similar but
equivalent approximations, such as forcing the upper level
into Saha equilibrium with the continuum, have been used
elsewhere �22–24�. The consequence of the formulation used
here is that the actual continuum population is not well
defined—it will depend on the position of the depressed ion-
ization level. In a detailed calculation where the number of
free electrons is reduced by recombination, this loss of elec-
trons into the Rydberg states would present major problems.
However, as we assume a constant electron density through-
out the recombination, reflecting both the early stages of re-
combination and the nature of the physical problem consid-
ered, the use of a large number of high-lying energy levels
does not lead to difficulty. This approximation allows us to
identify the Z scaling, which is established very quickly as
electron collisions fill in the initial void in the electron ther-
mal distribution below the continuum. This latter process
leads to an increase in the electron temperature �14� �three-
body heating, not included in this analysis�.

As noted earlier the time histories of the recombination as
displayed show similar behavior �Figs. 3–5�. The relative
populations of the excited states in their steady state are con-
stant with respect to the reduced electron density, although
they vary with temperature. Due to the low temperature,
most electrons are in bound high-lying states �with large sta-
tistical weight�, whose populations satisfy Saha’s equation.
The normalization of the state populations requires that the
total number of ions be constant �unity�. The population
among the high-lying excited states is therefore Boltzmann
distributed and totals almost unity. The individual popula-
tions are consequently practically independent of density and
depend only on temperature through the parameter Y. The
continuum population �in this calculation� is relatively small
compared to the totality of that in the excited states and
�from Saha’s equation� varies inversely with the electron
density.
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and second excited states divided by their statistical weight plotted
for principal quantum numbers as functions of the reduced time
for the case of Z=3 at two different densities Ne=2�10−5 and
Ne=3�10−4 and three different temperatures Y =20 �a�, 40 �b�, and
100 �c�.
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The reduced unit of time �t̄=ANet� contains the essential
constants of the collision rates. Hence, since the rates are
dominantly collisional among these states, the time histories
of the population growth in reduced time units are indepen-
dent of density. Introducing the modified radiation constant
�= B̄ /Ne into the reduced equations �19� we see that the
equations remain unchanged if the electron density is scaled
as Z4—i.e., as in the steady state. The time histories of the
states are therefore identical as noted earlier for similar val-

ues of the steady-state density parameter N̄e. This similarity
may be expressed in a formal structure valid at low tempera-
ture:

qn = qtotQn�Z−4Ne,Y,ANet� , �21�

where qtot is the total population of the ion, normally unity.

The function Qn�N̄e ,Y , t̄� can be calculated by direct

integration—e.g., Figs. 3–5. For levels n�3 and at very low
temperatures n=2 also there is a further simplification
Qn�Y , t̄� only; i.e., there is no direct dependence on N̄e.

This similarity relation is a consequence of the fact that,
when the number of atomic states is large, nearly all the
electrons are in bound states. Since the relaxation of the
high-lying states with the continuum and among themselves
is rapid, the steady-state relations can be applied. The num-
ber of electrons in the continuum, which has a different form,
are relatively small. Hence using a set of levels cutoff at a
high quantum number �200 in this case� leads to the similar-
ity relationships. However, if a low cutoff is applied, so that
the number of electrons in the continuum is relatively large,
then the form of similarity is modified, such that the vari-
ables exhibiting similar behavior are qn / �Neq�� at constant
Y. This term is consistent with the steady state and with the
variation of q� noted above, but the scaling is less exact.
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and Z=3, Ne=6.25�105, and Y
=40, illustrating the Z4 scaling.

0 5 10 15 20
Time

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

R
ed

uc
ed

po
pu

la
tio

n
fr

ac
tio

n

N
e
=3.4×10

-3

N
e
=8.0×10

-4

n=1 n=2n=3
FIG. 5. Plots of the popula-

tions of the ground state and first
and second excited states divided
by their statistical weight plotted
as functions of time for the case of
Z=6, Ne=8�10−4 and Ne=3.4
�10−3, and Y =100.

POPULATION INVERSION IN PLASMAS GENERATED… PHYSICAL REVIEW E 76, 056404 �2007�

056404-7



At “high” temperatures Y �30 the bottleneck lies close to
the upper state of the inversion. As a result, inversions can
form due to the additional net downward flux into the upper
level necessary to support the population in the steady state
against upward excitation. However, at low temperatures Y
�50, the delays inherent in the development of the cascade
are critical in enabling the establishment of an inversion.
Following the onset of recombination the upper Rydberg lev-
els are filled with populations in Saha equilibrium with the
continuum �Fig. 2�. The Saha limit progressively decreases
until the bottleneck at n=
Y is reached after about 1 time
unit �ANe�−1. The population of the first excited state, how-
ever, achieves its equilibrium value significantly later. The
growth of the n=2 population is quite well described by the
relation

q2 = q2
s�1 − exp�− R̄2�t̄ − t̄���� if t̄ � t̄�,

0 otherwise,
� �22�

where R̄2 is the total population rate into the n=2 level cal-
culated in the steady state and t̄� is the time taken for the
higher states to reach their equilibrium values �Fig. 2�. Prior
to this the cascade into the level n=2 is weak, since the
downward transitions are predominately collisional and

therefore tend to be between neighboring levels. We can

make an estimate of the time t̄� and the rate R̄2 from the
average energy loss per unit time in the cascade �25�,

�E =
8�


3
AY−1NeḡIII, �23�

and the ionization energy of the appropriate level. The Gaunt
factor ḡIII can be estimated by comparing the analytic expres-
sion for collisional cascade recombination with the numeri-
cal calculation, in the region of interest ḡIII�0.1. The time
�in reduced units� taken to establish the bottleneck, t̄��1,
and assuming the temperature is sufficiently high that the

level n is dominantly populated by collisions R̄n�n2 /Y. At
lower temperatures radiation from higher levels will domi-
nate. A more accurate rate can be estimated from the steady-
state model if necessary.

In a similar fashion, the population growth to the ground
state is dominated by radiative and collisional deexcitation
from the level n=2 immediately above and by radiative tran-
sitions from the continuum and the high-lying states. The
population rate therefore increases as the level above fills, as
can be seen in Fig. 3. The population is approximately de-
scribed by

q1 � R̄1t̄ + �q2
s R̄12�t̄ − t̄���t̄ − t̄�� −

1 − exp�− R̄2�t̄ − t̄���

R̄2

� if t̄ � t̄�,

0 otherwise,
� �24�

where R̄12 is the total deexcitation rate from state 2 to 1 and
R̄1 the total radiative decay rate into state 1 from high-lying
states calculated from the steady-state model.

The generation of an inversion clearly depends on the
relative values of the three rates R̄1, R̄2, and R̄12. Since R̄1

and R̄12 are predominately radiative, they are insensitive to
the electron density; R̄2, on the other hand, is collisional. At
low temperature, q2

s � R̄2 / R̄12, and only after time R̄2
−1 does

the population rate into the ground state become ��R̄1+ R̄2�.
In principle, we could use this analysis to identify a criterion
for the minimum density for the establishment of a popula-
tion inversion. In fact, it is easier and more accurate to use
simulations of the temporal development to empirically iden-
tify the limiting density. In Table I we give values of the

minimum �critical� density N̄e at which inversion can occur
for a limited number of values of the temperature Y obtained
by direct simulation in both reduced and laboratory units. It
can be seen that as the temperature is reduced, the electron
density is correspondingly reduced. This reflects the strong
temperature dependence of the collisional cascade recombi-
nation rate �T−9/2, which pumps the excited states. This
should be contrasted with the radiative recombination rate

directly into the ground state. However, at low density and
temperature, the absolute values of the inversion density will
reflect both the distance from the bottleneck and the low
particle density, and may therefore be smaller than values at
slightly higher temperature.

The duration of the inversion predicted from these calcu-
lations may be quite long. For example, the case of Fig.
3�b�—namely, a lithium system with ne=1019 cm−3 and kT
=3 eV �Ne=3�10−4 and Y =40�—predicts an inversion last-
ing about 3.5 ps �7 units�. This value may be compared the
value of 1 ps �14�, obtained by a calculation based on a
complete �Fokker-Planck� simulation of the electron and ion
population distributions following �ATI� ionization and re-
laxation. The difference is believed to be due to the non-
Maxwellian tail of the electron distribution following ATI

TABLE I. Limiting density.

Y 20 40 100 150

N̄e
1.85�10−7 3.09�10−7 6.17�10−7 8.64�10−7

Z−2kT �eV� 0.68 0.34 0.136 0.091

Z−7ne �cm−3� 6.27�1014 3.70�1014 1.87�1014 1.42�1014
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associated with the ionization of hydrogenlike lithium. These
electrons will reionize the n=2 state, damaging the inver-
sion.

We note from Figs. 3–5 that transient inversions can also
occur between the n=3 and the n=1 and 2 states—namely,
on the L� and H� lines. The former is of less importance
than the L� line considered here due to its lower oscillator
strength and gain, and the latter is generally developed in a
quasistatic mode with longer lifetime. It is readily shown that
inversions can be obtained from the steady-state model pro-
vided the n=3 level is dominantly pumped by collisions and
the principal decay of the n=2 state is radiative �31�.

Figure 6 shows the region within which inversions can be
expected to occur on the H� line in the absence of radiation
trapping, the region of gain lying in the upper left quadrant
of the plot. The values are shown as approximations only in
that no effort was made to interpolate to obtain a more ac-

curate value. We note the near linear variation Y � N̄e. Values
obtained in earlier work �32,33� are consistent with this re-
gime.

VI. CONCLUSIONS

It is clear from Eq. �9� that the direct radiative recombi-
nation rate from the continuum into the ground state is faster
than that into the resonance level. Similarly it follows from
Eq. �8� that transitions from the excited states are also faster
once the cascade is established. Thus population inversions
between the n=1 and n=2 states cannot be generated in a
purely radiative cascade system. Consequently there is a
minimum density at which the inversion can occur.

Collisional population of the n=2 state is required to gen-
erate a ground-state–resonance-state inversion. The system
must be in the collisional cascade regime, where the bottle-
neck lies above the collision limit. Ideally the bottleneck
should lie near but above the resonance level to avoid the

approach of LTE to the ground state. This implies that the
temperature must be significantly less than 1

4Z2IH, or Y 
10.
The minimum density for inversion will depend on the posi-
tion of the bottleneck—i.e., on the temperature.

Similarity between systems is achieved if the parameters

Y and N̄e are equal, provided the excited states and con-
tinuum are equilibrated after a rapid transient in which the
higher states are filled to the LTE populations. The system
subsequently decays in an almost quasi-steady-state mode.
The minimum density condition must therefore obey this
similarity form. Due to the progressive decay into the ground
state, the system as a whole is inherently non-quasi-steady-
state and the inversion time limited.

Population inversion can occur in the quasi-steady-state
mode between the n=2 and higher levels, even in a radiative
cascade, due to the rapid decay of the former to the ground
state, provided the resonance line is optically thin.

The depressed ionization continuum limit must lie above
both the resonance level for the upper laser state to exist and
the bottleneck for the cascade to be well formed. The de-
pressed ionization limit is given by nlim=1.1�104Z1/2 /ni

1/6

where ni �cm−3� is the total ion density �34�. The condition
on the depression of the ionization limit can thus be written

as Z
a0

� 3
4�ni

�1/3


IH

kT or in scaled units NiY
3/21 /3.

The increasing strength of radiative transitions with re-
spect to collisional �B�, as the atomic number Z increases,
limits the onset of inversion at high Z. At large atomic num-
bers, Z, the onset of degeneracy inhibits recombination when

the value of N̄e	0.01Z−4, implying a value Y, which may be
too small to allow inversion.

It is implicit in this model that the plasma be dilute
�weakly coupled�, so that the interionic separation distance
0.62ni

−1/3 will be small compared to the Debye length
743
kT /ne in cgs units with kT in eV or in scaled units
1.4Z−3/4Y1/4Ni

−1/3Ne
1/2�1.
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APPENDIX: SIMILARITY RELATIONS

Relaxation among the higher excited states and the con-
tinuum is very rapid compared to the rate of population of
the lower states. The population among the upper states is
therefore given approximately by their steady-state values
with respect to the continuum—i.e., modified Saha
populations—such that the continuum population can be
written

q� = 1 � �1 + Ne � �ngn exp�Y/n2�� , �A1�

where �n�Y ,Ne� is the Saha correction term for level n and

N̄e=Z−4Ne.
For short times such that the population of the lower lev-

els remains small and assuming that the population of the
upper levels is sufficiently large, the continuum population
q� may be considered constant. The population of level n, qn,

is expressed as fn=qn / �q�Ne�. Thus the growth of the popu-
lation of level n in our reduced units can be expressed as

dfn

dt̄
= � C̄nm�Y�fm − C̄mn�Y�fn + �

m�n

�Ānmfm − �
m�n

�Āmnfn

+ �C̃n��Y� + �Ãn��Y�� − C̄�n�Y�fn, �A2�

where C̃n�= C̄n� /Ne and Ãn�= Ān� /Ne. Noting that �
=1.221�10−6 /Ne we see that

fn�Y,Ne, t̄� .

Furthermore, if the number of excited levels is large or the
density high and temperature low, it follows from Eq. �A1�
that Neq� is a function of Y and N̄e only and hence that

qn�Y , N̄e , t̄� only, as discussed earlier.

�1� L. I. Gudzenko and L. A. Shelepin, Sov. Phys. Dokl. 10, 147
�1969�.

�2� F. E. Irons and N. J. Peacock, J. Phys. B 7, 1109 �1974�.
�3� P. Jaeglé, G. Jamelot, A. Carillon, A. Sureau, and P. Dhez,

Phys. Rev. Lett. 33, 1070 �1974�.
�4� J. Peyraud and N. Peyraud, J. Appl. Phys. 43, 2993 �1972�.
�5� W. W. Jones and A. W. Ali, J. Appl. Phys. 48, 3118 �1977�.
�6� G. J. Tallents, J. Phys. B 10, 1769 �1977�.
�7� D. Goodwin and E. Fill, J. Appl. Phys. 64, 1005 �1988�.
�8� K. Lan, E. Fill, and J. Meyer-ter-Vehn, Europhys. Lett. 64, 454

�2003�.
�9� N. Burnett and P. Corkum, J. Opt. Soc. Am. B 6, 1195 �1989�.

�10� Y. Nagata, K. Midorikawa, S. Kubodera, M. Obara, H. Tashiro,
and K. Toyoda, Phys. Rev. Lett. 71, 3774 �1993�.

�11� D. V. Korobkin, C. H. Nam, S. Suckewer, and A. Goltsov,
Phys. Rev. Lett. 77, 5206 �1996�.

�12� Y. Avitzour, S. Suckewer, and E. Valeo, Phys. Rev. E 69,
046409 �2004�.

�13� Y. Avitzour and S. Suckewer, J. Opt. Soc. Am. B 23, 925
�2006�.

�14� G. J. Pert, Phys. Rev. E 73, 066401 �2006�.
�15� E. Hinnov and J. Hirshberg, Phys. Rev. 125, 795 �1962�.
�16� H. Griem, Plasma Spectroscopy �McGraw-Hill, New York,

1964�.
�17� N. M. Kuznetsov and Yu. P. Raizer, J. Appl. Mech. Tech. Phys.

4, 6 �1965�.

�18� L. Pitaevskii, Sov. Phys. JETP 15, 913 �1962�.
�19� A. V. Gurevich and L. P. Pitaevskii, Sov. Phys. JETP 19, 870

�1964�.
�20� V. A. Abramov and B. M. Smirnov, Opt. Spectrosc. 21, 9

�1966�.
�21� I. S. Veselovskii, Sov. Phys. Tech. Phys. 14, 193 �1969�.
�22� D. Bates, A. Kingston, and R. McWhirter, Proc. R. Soc. Lon-

don, Ser. A 270, 155 �1962�.
�23� D. Bates, A. Kingston, and R. McWhirter, Proc. R. Soc. Lon-

don, Ser. A 279, 10 �1963�.
�24� R. McWhirter and A. Hearn, Proc. Phys. Soc. London 82, 641

�1962�.
�25� G. Pert, J. Phys. B 25, 619 �1990�.
�26� M. Grout, K. Janulewicz, S. Healy, and G. Pert, Opt. Commun.

141, 213 �1997�.
�27� L. Landau and E. Lifshitz, Quantum Mechanics �Pergamon

Press, Oxford, 1959�.
�28� H. van Regemorter, Astron. J. 136, 906 �1962�.
�29� M. Seaton, in Atomic and Molecular Processes, edited by D.

Bates �Academic Press, New York, 1962�, pp. 375–420.
�30� D. Sampson and H. Zhang, Astrophys. J. 335, 516 �1988�.
�31� G. Pert and S. Ramsden, Opt. Commun. 11, 270 �1974�.
�32� G. Pert, J. Phys. B 9, 3301 �1975�.
�33� D. Jacoby, G. J. Pert, L. D. Shorrock, and G. J. Tallents, J.

Phys. B 15, 3557 �1982�.
�34� R. M. More, Adv. At. Mol. Phys. 21, 305 �1986�.

G. J. PERT PHYSICAL REVIEW E 76, 056404 �2007�

056404-10


